

Data analytics approaches to enable EWAS

Chirag J Patel and Nam Pho Emory Exposome Workshop 06/16/16

DEPARTMENT OF Biomedical Informatics chirag@hms.harvard.edu @chiragjp www.chiragjpgroup.org

Extensible & open-source analytics software library (XWAS R package)

Freely available exposome data for your research (NHANES: 40,000 individuals and 1,000 variables)

Computer "environment" to conduct EWASs (Docker container in RStudio)

Materials for teaching and demonstration

http://bit.ly/exposome-analytics-course

Please let us know if you are using the resources (or provide feedback)!

Real quick: What is the *exposome*? What is the *phenome*?

exposome

<u>internal</u> lead (serum) nutrients (serum) infection (urine) *metabolome* <u>external</u> geography air pollution income

phenome

<u>function</u> expression telomeres *metabolome* diseases diabetes cancer heart disease

Exposome associated with the **phenome**?and vice versa?

Analytic **tools** and big data **infrastructure** required to associate *exposome* with *phenome!*

We can learn a thing or two from *genomics* investigation...

e.g., GWAS

Big data approaches fueled discovery of genetic variants in disease (example: genome-wide association [**GWAS**])

GWAS in Type 2 Diabetes Voight et al, Nature Genetics 2012 N=8K T2D, 39K Controls

A search engine for robust, reproducible genotypephenotype associations...

There are *non-trivial* data analytic challenges in searching for exposome-phenome associations!

JAMA 2014 Pac Symp Biocomp 2015 Dense correlational web!

what causes what?

confounding bias?

JAMA 2014 Pac Symp Biocomp 2015

http://bit.ly/globebrowse

Pac Symp Biocomput. 2015 JECH. 2015 *Multiplicity*: how to determine signal from noise? *type 1 error* (spurious findings)

Suppose you are testing 1000 exposures in case-control study (disease vs. healthy)...

... and there were no difference between the cases and controls...

...how many findings would be "significant" at a p-value threshold of 0.05 (due to chance)?

Regime of multiple tests and "signal to noise": Histogram of p-values in 2 scenarios: no difference and 5% different

(5% true associations)

Estimating the deviation from null: **QQplot:** -log10(pvalues) in the null and EWAS distributions

The tension between type 1 and type 2 errors: *Power* and *replication* for robust associations!

Discovery sample sizes must be large to overcome multiple testing and mitigate winner's curse

Replication sample size must be large to detect association

What will the *exposome* data structure look like?:

a *high-dimensioned 3D* matrix of (1) *exposure* measurements on (2) *individuals* as a function of (3) *time*

What will the *exposome* data structure look like?:

a *high-dimensioned 3D* matrix of (1) *exposure* measurements on (2) *individuals* as a function of (3) *time*

A schematic of a data-driven search for *exposome-phenome* associations...

Time for you to give it a try!

Extensible & open-source analytics software library (XWAS R Package)

Freely available exposome data for your research (NHANES: 40,000 individuals and 1,000 variables)

Computer "environment" to conduct EWASs (Docker container in RStudio)

Materials for teaching and demonstration

Fully merged dataset: National Health and Nutrition Examination Survey

since the 1960s now biannual: 1999 onwards 10,000 participants per survey

>250 exposures (serum + urine)

>85 quantitative clinical traits (e.g., serum glucose, lipids, body mass index)

Death index linkage (cause of death)

Ready to analyze! N=41K with >1000 variables (let us know; we can give you a DOI)

13 **EWAS**-related manuscripts

preterm birth type 2 diabetes type 2 diabetes genetics lipids blood pressure income mortality **telomere length** methodology (5)

http://bit.ly/ewas_nhanes

Associations in *Telomere Length*: Can you identify the associations in this graph?

median N=3000; N range: 300-7000

Associations in *Telomere Length*: Can you identify the associations in this graph?

Nam will show you how!

http://bit.ly/exposome-analytics-course

Please let us know if you are using the resources (or provide feedback)!

Acknowledgements

RagGroup Nam Pho Chirag Lakhani Adam Brown Danielle Rasooly Arjun Manrai Grace Mahoney Matthew Roy

Harvard DBMI

Isaac Kohane Susanne Churchill Stan Shaw Jenn Grandfield Michal Preminger

<u>Stanford</u> John PA Ioannidis

Gary Miller Kristine Dennis

NIH Common Fund Big Data to Knowledge

Agilent Technologies

DEPARTMENT OF Biomedical Informatics Chirag J Patel chirag@hms.harvard.edu @chiragjp

www.chiragjpgroup.org

